http://www.skepticalaquarist.com/docs/water/chlorine.shtml
Chlorine and Chloramines.
The chlorine ion dissolved in water is hypochlorite (Cl2O2), the same ion as found in regular household chlorine bleach like Clorox. No anion without a cation, so hypochlorite comes to you as sodium hypochlorite. When a solution of chlorine bleach in water has entirely dried, there's no residue but a bit of common salt (taste it and see), which you might want to rinse away.
Water utilities have replaced hazardous chlorine gas (Cl2), which used to be shipped around the country in railroad tank cars, either with chlorine produced on-site by the electrolysis of salt brine, or with dry calcium or sodium hypochlorite.
If the chemistry of chlorine is mysterious and you want some basic introduction to the science of chlorine, its manufacture and its everyday uses, the Chlorine Chemistry Council website offers some material, including some more specialized studies and discussion (from the chlorine manufacturers' point-of-view of course) of some public policy issues.
AquaScience Research Group, manufacturers of a dechlorinator for aquaculture, offer another good discussion of the water chemistry of chlorine and chloramines at
Dechlorinating it is often the first concern with tapwater. Most commercial dechlorinators are based on plain sodium thiosulfate, Na2S2O3, a crystalline salt that generally comes pre-mixed with distilled water, usually in a 1% solution. At this strength, 10 drops (that's 0.5 cubic mm) will neutralize common municipal levels of chlorine in 10 gallons, turning the chlorine to harmless chloride ions and adding some molecules of sodium and sulfur to the water. Unreacted sodium thiosulfate that may be left over is pretty inert and harmless.
Two commercial brands that are plain sodium thiosulfate are Wardley's ChlorOut and Mardel's MarChlor.
If you needed large quantities of chlorine neutralizer, you could buy sodium thiosulfate less expensively in crystal form, directly from a manufacturer, such as Fishy Farmacy. Doc Johnson tells you how to mix up a stock solution at www.koivet.com in the "Medications" articles, under "Dechlorinator." Better get together with a few friends, because just 1 gram of crystals in distilled water makes a liter of 1% stock solution. At rates of one drop of stock solution to a gallon or two of chlorinated tapwater, that could be a lifetime's supply.
There are also sources outside the aquarium hobby, for sodium thiosulfate has other uses. It keeps down extraneous bacteria in the making of red wines; in contact with the acids in grape juice it forms sulfur dioxide. So, if you want to save money on chlorine "remover" you might want to buy it as a wine-making supply. Or as an antidote kit for cyanide poisoning, by the way! Back when amateur photographers were developing their own b/w photos, sodium thiosulfate was their "developer," and so it was cheaply available as "hypo" in any photo hobby shop. "Hypo" was short for "hyposulfite of soda" an obsolete term for Na2S2O3 . Nowadays fixatives often have additional hardening agents to toughen the coating in which the reactive silver emulsion is imbedded on the photographic paper. In other words, hypo isn't always pure sodium thiosulfate any more, so check before you use hypo as a good cheap substitute. Doc Johnson doesn't recommend it.
Before municipal water utilities in the U.S. were switching over to chloramines, I'd have suggested that you just let chlorine outgas naturally. I'm currently still able to do this with New York City's vaunted tapwater. The natural way to dechlorinate is to let the tapwater stand for twenty-four hours in jugs that offer a large water-to-air surface. I like the 6-gallon unbreakable plastic jugs Poland Spring water was delivered in til recently; they're built to be easy to grip and they're rectangular to stash close. But you might need a virgin 55gal garbage can, which you have indelibly marked in big letters "Aquarium Use Only So Dont Even Think About It." Either way, the chlorine will dissipate.
Frankly, if you have an aerator attached to your faucet, it may provide all the outgassing that's needed for a partial water change; after all, many people are using Python-type water-change hoses without trouble. And if the faucet aerator is charged with an activated carbon filter to improve the drinking water, so much the better! Fresh carbon will adsorb chlorine.
If you are impatient you could run an airline in the jug or can, but there isn't any reason to use de-chlorinator to neutralize chlorine (not chloramine), except in an emergency. Don't let anyone undermine your security about this fact. If you have any lingering doubts, borrow someone's chlorine test kit (don't buy one yourself) and test your water. Test the water that has passed through your faucet aerator. And test the water first from the tap and again after sitting still for twenty-four hours. If you insist on owning your very own chlorine test, by all means get it at the Swimming Pool Supplies section of your Home Depot. It's the very same test, using the very same chemicals, as ones that are specially packaged and specially priced for the "captive" aquarium market.
Chloramines. Chloramines offer a more aggressive treatment for maintaining some residual chlorine in tapwater. Chloramine remains more stable in the water mains than chlorine.
In areas where organic molecules in drinking water are high, chlorine tends to bind with them, even such harmless ones as humic or fulvic acids, to form trihalomethanes, which are implicated in cancer. Chlorine will bind with phenols too, if they are present, to give a foul chemical taste. Trihalomethanes could simply be adsorbed by activated charcoal at the water plant, according to the McGraw-Hill Encyclopedia of Science and Technology, "Water Treatment." But in order to be effective, activated carbon needs a slow flow that offers sustained contact with the water and frequent reactivation in a kiln. On the giant scale that's required, carbon filtration isn't practical. So instead, water boards are increasingly adding chloramines before water leaves the treatment plant, acting under pressure from the E.P.A. who lowered permissible standards for trihalomethanes in Nov 1998. "Chloramine is formed when ammonia is added to water that contains free chlorine. Depending upon the pH and the amount of ammonia, ammonia reacts to form one of three chloramine compounds. Of the three, monochloramine is the preferred compound." So says the Washington Aqueduct Chloramine Facts part of the DC Health website.
Because the chloramines are much more stable than chlorine, they maintain better residual disinfectant levels in the water mains. The stability of chloramine creates problems for fishkeepers, since these chemicals will not simply outgas in a holding can, the way chlorine does. Even exposed to sun and plentiful oxygen, Chloramine-T could still last for as long as a week.
My understanding of the DC Health site's quote is that some chloramines could as readily form in aquarium water if you were to add chlorinated water straight from the tap to a tank that already carried some free ammonia. Which chloramine formed would depend on the pH of the water, a factor which controls the interconversion of ammonia (NH3) with ammonium (NH4). Chloramine formation could only become an issue if you were using a "direct-fill" hose, and had highly-chlorinated tapwater and free ammonia in the tank.
Chloramine toxicity. Chlorine is an oxidizer, which burns a fishes' gills. Chloramines, on the other hand, pass across the gills of a fish and into its blood, where the molecule attaches to the hemoglobin, acting like nitrite to induce methemoglobinemia. The toxicity of chloramines is affected by pH, I'm reading at www.fishdoc.co.uk, with Chloramine-T more toxic at lower pH. Fish stricken by chloramine poisoning are sluggish and respire heavily. But chloramines have been inflated into a bugaboo by some packagers/distributors of various water "conditioners." Aquarium Pharmaceuticals, for instance, characterizes chloramine as "deadly" in corporate literature. Nevertheless, the not-invariably-"deadly" Chloramine-T is currently being studied by the U.S. government as potentially important to fish hatcheries in controlling bacterial gill disease. Studies at UC Davis have inspired widespread use of Chloramine-T to kill pathogenic bacteria and parasites in koi ponds. A professional assessment I trust is this from John P. Grazek: "The addition of sodium thiosulfate will neutralize both chlorine and chloramine. However, ammonia is released when the sodium thiosulfate combines with the chloramines, and this could be a problem to fish where there is little or no biological filtration." (in Aquariology: Fish Diseases and Water Chemistry, Tetra Press 1992). In chloramine, two chloride ions are bound to each ammonia molecule, and that's why you're usually advised to double the quantity of sodium thiosulfate you'd use for chlorine alone. In acidic water, the ammonia released would largely be ionized to its non-toxic form, ammonium. In a planted aquarium NH3/NH4 would be rapidly scavenged by the plants.
Chuck Gadd's clear and succinct article on ways you can deal with chlorine/chloramines is at Chuck's Planted Aquarium Pages.
Testing for chloramines. If you're testing for chloramines, make sure the test kit you've borrowed is testing for "total chlorine" or "combined chlorine," not for "free chlorine." A test for "free chlorine" would misleadingly read zero in chloraminated water.
On the other hand, when your tapwater tests positive for ammonia, this is a sign that your water is being treated with chloramines.
The Washington DC water utility offers a document "How the conversion to Chloramines affects your fish" generated by the U.S. Army Corps of Engineers, which injects a note of sobriety into this sometimes panic-inducing situation. Being a public agency, the Washington Aqueduct couldn't recommend any commercial brand, but in general they recommended four general methods for neutralizing chloramines: 1. activated carbon in filtration, 2. sodium thiosulfate, 3. commerically-available de-chloramination products ("some simply remove the chlorine, while others 'lock up' or detoxify remaining ammonia"), or 4. a chemical agent plus a biological agent ("bio-filter") to remove the ammonia. (You should already have known all this, eh?)
If you're depending on 1. filtration with granular activated carbon to break the chloramine bond, make sure the carbon is fresh and the filtration is slow. Since some ammonia is likely to be freed, one way or the other, you have an additional incentive to de-chloraminate before you add water to the aquarium.
If you're de-chloraminating as in 3. with commercial products, it's useful to know that Ammo-Lock2 (Aquarium Pharmaceuticals) and AmQuel (Kordon) each react with the ammonia to form non-toxic, inert, moderately stable substances. With these products, the ammonia is bound, but not actually removed. It does remain available to the nitrifying bacteria, I understand; that's an important consideration. Each company presents a clear un-hyped analysis of its product, Kordon at www.kordon.com and Aquarium Pharmaceuticals at www.aquariumpharm.com
Saturday, December 12, 2009
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment